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Abstract
A two-dimensional Pauli Hamiltonian describing the interaction of a neutral
spin-1/2 particle with a magnetic field having axial and second-order
symmetries is considered. After separation of variables, the one-dimensional
matrix Hamiltonian is analysed from the point of view of supersymmetric
quantum mechanics. Attention is paid to the discrete symmetries of the
Hamiltonian and also to the Hamiltonian hierarchies generated by intertwining
operators. The spectrum is studied by means of the associated matrix shape
invariance. The relation between the intertwining operators and the second-
order symmetries is established, and the full set of ladder operators that
complete the dynamical algebra is constructed.

PACS numbers: 11.30.Pb, 03.65.Ge, 03.65.Fd, 02.30.Gp

1. Introduction

In this work we will study a Pauli Hamiltonian describing the interaction of a neutral spin-1/2
particle interacting with a magnetic field generated by an electric current-carrying straight
wire. This system was introduced in [1], where it was analysed in the momentum space. Here,
we will carry out a systematic study in the configuration space based on the techniques of
supersymmetric (SUSY) quantum mechanics [2, 3], sometimes referred to as the factorization
method [4], a technique that has already been used to study spin-1/2 Pauli equations (for
different approaches, see for example [5]).

To motivate the specific form of the Pauli Hamiltonian for the present work, we will
start with the formulation of its symmetry properties. We will see later that this additional
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information is also closely related to the factorization method. Thus, let us consider the Pauli
Hamiltonian in the three-dimensional space

H3 = p2

2m
+ µσ · B(x) + V (x), (1.1)

where B(x) is a magnetic field, µ is the magnetic moment of the particle, V (x) is a scalar
potential and σ = (σ1, σ2, σ3), σj being the Pauli matrices, that is,

σ0 =
(

1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (1.2)

We take the usual notation for the Cartesian coordinates x = (x1, x2, x3) and the momentum
operators pk = −ih̄∂/∂xk ≡ ∂xk . Now, we will impose some symmetries on this Hamiltonian
in order to obtain the precise example we want to consider in this work.

1.1. Rotational–translational symmetry along the x3-axis

We assume that the current-carrying wire is placed on the x3-axis, and we look for the systems
(1.1) allowing for first-order symmetries of the form

P3 = p3 + a(x) J3 = x1p2 − x2p1 + b(x) ≡ L3 + b(x), (1.3)

where a(x) and b(x) are Hermitian matrix-valued functions to be determined. By imposing
that J3 and P3 are symmetries of H3, that is, [J3,H3] = [P3,H3] = 0, we are led to the
following explicit expressions (up to an equivalence):

J3 = −ih̄∂θ + βσ3 P3 = −ih̄∂x3 (1.4)

B(x) = (f (ρ) cos[2β(θ − θ0)], f (ρ) sin[2β(θ − θ0)], g(ρ)) (1.5)

V (x) = V (ρ), (1.6)

where (ρ, θ, x3) are cylindrical coordinates, the functions f (ρ), g(ρ), V (ρ) are arbitrary and
β, θ0 are free parameters. Therefore, we can decouple the problem as follows: a free motion
in the x3-axis and another motion in the plane (x1, x2). In the following, we will restrict
ourselves to the analysis of the system in the plane, with Hamiltonian H2 = H3 − p2

3

/
(2m).

1.2. Parabolic symmetry

Next, we also assume that there exists a second-order symmetry of parabolic type, that is, with
a leading second-order term associated with parabolic coordinates [6],

S1 = L3p1 + p1L3 + A(x) · p + p ·A(x) + N(x), (1.7)

where A(x) and N(x) are the matrix-valued vector and scalar Hermitian functions,
respectively. If the magnetic term determined by f (ρ) is present, we arrive, up to an
equivalence, at the same model already reported in [1]:

B(x) = (x2/ρ
2,−x1/ρ

2, 0) V (x) = 0 (1.8)

J3 = −ih̄∂θ +
h̄

2
σ3 ≡ L3 +

h̄

2
σ3 (1.9)

S1 = J3p1 + p1J3 − µx2σ · B(x). (1.10)

The commutator of J3 and S1 gives another second-order symmetry S2:

S2 = J3p2 + p2J3 + µx1σ · B(x). (1.11)
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All these symmetries, together with the HamiltonianH2, close the following quadratic algebra:

[J3,S1] = iS2 [J3,S2] = −iS1 [S1,S2] = −4iH2J3. (1.12)

As was mentioned in [1], the symmetries S1,S2 are similar to the components of the Laplace–
Runge–Lenz vector for the Coulomb potential.

Previous works have considered the quantum mechanical problem that we are dealing
with in this paper, mainly in the momentum space [7], but we are also paying attention to some
partial aspects in the configuration space [8]. In the present work we want to address it from
a self-contained, systematic and more complete point of view, including important properties
not considered before. Basically, we will use the SUSY quantum mechanics approach with
special emphasis on the shape invariance of the model.

This paper is organized as follows. In section 2, we perform the separation of variables
and obtain the discrete symmetries that are basic in the development of the following sections.
Next, in section 3 we analyse the factorization and the shape-invariance properties of the
radial equation. We study the ground states by means of this factorization in section 4 and
the excited states in section 5. In section 6, we study the relationship between the second-
order symmetries and the intertwining operators entering the factorization. In section 7, we
build the matrix ladder operators connecting eigenstates with different energies of the same
Hamiltonian. Finally, in section 8 we conclude this work with some remarks, stressing the
most original results obtained in this paper.

2. Separation of variables and discrete symmetries

Let us consider again the two-dimensional matrix Hamiltonian H2 obtained from (1.1), where
we have excluded the free part along the x3-axis, and where the interaction is given by the
magnetic field (1.8), thus, sharing the symmetries (1.9)–(1.12). In order to simplify the
expressions, we take

h̄ = 2m = 1 x = µx1 y = µx2 r = µρ, (2.1)

so that we will work with the following form of the Hamiltonian:

H = H2/µ
2 = −(

∂2
x + ∂2

y

)
+

y

r2
σ1 − x

r2
σ2, (2.2)

where the second-order symmetries are

Tj = µ−1Sj j = 1, 2. (2.3)

2.1. Separation of variables

Since the above Hamiltonian commutes with the operator J3 given in (1.9), we can look for
their common eigenfunctions

H�λ = E�λ J3�λ = λ�λ �λ =
(

ψ1

ψ2

)
. (2.4)

The rotational symmetry can be used to separate variables in polar coordinates (r, θ) so that
the J3-eigenfunctions in (2.4) are given by

�λ(r, θ) = Yλ(θ)Fλ(r), (2.5)

with

Yλ(θ) =
(

ei(λ−1/2)θ 0

0 ei(λ+1/2)θ

)
Fλ(r) =

(
f1(r)

f2(r)

)
. (2.6)
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Now, taking into account the polar expression for the Laplacian 	 = ∂2
r + 1/r∂r + 1/r2∂2

θ ,
the eigenfunction equation for H takes the form

−F ′′
λ (r) − 1

r
F ′

λ(r) +
λ2 + 1

4

r2
Fλ(r) − λ

r2
σ3Fλ(r) − 1

r
σ2Fλ(r) = EFλ(r). (2.7)

In order to eliminate the first-order derivative term, we make the replacement

Fλ(r) = r−1/2
λ(r), (2.8)

so that we finally have a one-dimensional matrix Schrödinger-like equation

Hλ
λ(r) ≡
{
− d2

dr2
+

λ2 − λσ3

r2
− σ2

r

}

λ(r) = E
λ(r), (2.9)

where we have introduced the notation Hλ for the radial part of the initial Hamiltonian H.
Note that this equation is quite similar to the radial Schrödinger equation for a charged particle
in a Coulomb potential

Hc
�φ(r) ≡ −φ′′(r) +

�2 − �

r2
φ(r) − 1

r
φ(r) = Ecφ(r), (2.10)

where � is the orbital momentum. The discrete spectrum is given by the well-known formula

Ec = − 1

4(� + n + 1)2
n = 0, 1, . . . . (2.11)

2.2. Discrete symmetries

In the following we will describe some discrete symmetries of the matrix equation (2.9).

2.2.1. Conjugation. Let us consider the antilinear operator

C = σ3K, (2.12)

where K is the complex conjugation operator, K
(r) = 
∗(r). Then, it is immediate to check
that this is a symmetry of Hλ:

HλC = CHλ. (2.13)

The eigenfunctions of C, up to a global phase factor, are of the form


 =
(

φ1(r)

iφ2(r)

)
, (2.14)

where φ1(r) and φ2(r) are real functions. Hence, from now on, we will choose the
eigenfunctions of the matrix equation (2.9) in the form (2.14).

2.2.2. Reflection in λ. It is very easy to see from (2.9) that

σ2Hλ = H−λσ2. (2.15)

This means that the eigenfunction problem for Hλ is equivalent to that of H−λ:

Hλ
λ = E
λ ⇐⇒ H−λ
−λ = E
−λ 
−λ = σ2
λ. (2.16)

Observe that these two discrete symmetries can also be implemented in the space of
eigenfunctions of the two-dimensional equations (2.4). If we compare these discrete
symmetries with those of the Coulomb Hamiltonian Hc

� of (2.10), we see that the conjugation
is translated into the real character of the eigenfunctions, while the reflection property means
that Hc

� = Hc
−�+1.
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3. Factorizations and shape invariance

In this section, we will investigate the factorization and the supersymmetrical properties of
(2.9), the radial part of the Pauli equation. This one-dimensional 2 × 2 matrix problem
is interesting by itself, for an arbitrary value of λ, but especially for the two-dimensional
physical model (2.2) with λ = 1/2 + m,m ∈ Z. In particular, we will see that this matrix
model obeys the shape-invariance properties. This is very interesting because, up to now, the
shape invariance was used as a very elegant algebraic approach in the solution of one- and
two-dimensional scalar spectral problems [2, 3, 9, 10], while in this section it will be used to
determine the spectrum of a one-dimensional matrix example.

Following closely the well-known factorization of the Coulomb Hamiltonian (2.10), we
propose here the following ansatz for this matrix case:

Hλ =
(

d

dr
+

A + Bσ3

r
+ Dσ2

) (
− d

dr
+

A + Bσ3

r
+ Dσ2

)
+ γ, (3.1)

where A,B,D and γ are real constants to be determined. Indeed, we find two different
solutions having the following form:

Hλ = L−
λ L+

λ + γλ = L+
λ−1L

−
λ−1 + γλ−1 γλ = −1

4(λ + 1/2)2
, (3.2)

where we have used the following notation for the operators:

L±
λ = ∓ d

dr
+

(λ + 1/2) − (1/2)σ3

r
− (1/2)σ2

(λ + 1/2)
≡ ∓ d

dr
+ Wλ(r), (3.3)

Wλ(r) being the matrix superpotentials.
Of course, equations (3.1)–(3.3) are valid for any value of λ �= −1/2, and therefore we

can build a hierarchy of Hamiltonians {Hλ+m},m ∈ Z, as follows:

Hλ+m = L−
λ+mL+

λ+m + γλ+m = L+
λ+m−1L

−
λ+m−1 + γλ+m−1. (3.4)

These relations allow us to define an algebra of operators of the Hamiltonian hierarchy [11].
The operators L±

λ+m act as intertwining operators between two consecutive Hamiltonians Hλ+m

and Hλ+m+1:

L+
λ+mHλ+m = Hλ+m+1L

+
λ+m Hλ+mL−

λ+m = L−
λ+mHλ+m+1. (3.5)

These relations imply that the eigenfunctions of Hλ+m can be obtained from those of Hλ+m+1

with the same eigenvalue by acting with L−
λ+m, while the operator L+

λ+m makes this connection
in the opposite way. This correspondence between square-integrable eigenfunctions is one
to one, except when L±

λ+m annihilates some eigenfunctions. As usual, relations (3.4) and
(3.5) mean that the Hamiltonians of the hierarchy {Hλ+m} are shape invariant: intertwined
Hamiltonians have the same shape but different values of the parameter.

Now, let us see the effect of the discrete symmetries C and σ2 on the intertwining operators.
It is easy to check that

CL±
λ+m = L±

λ+mC (3.6)

and

σ2L
+
λ+m = L−

−λ−m−1σ2. (3.7)

From the commutation (3.6), we see that the intertwining operators keep the form of the
eigenfunctions 
 in (2.14). Relation (3.7) will have consequences for the ground states, as
we will see in the next section.



6992 M V Ioffe et al

◦ ◦ ◦ ⊗ • • •

◦ ◦ ⊗ • •

◦ ⊗ •

⊗

H−3 H−2 H−1 H0 H1 H2 H3

L+
−3 L+

−2 L+
−1 L−

0 L−
1 L−

2

L+
−2 L+

−1 L−
0 L−

1

L+
−1 L−

0

Φ̃0
−3

Φ̃0
−2

Φ̃0
−1

Φ̃0
0

Φ0
1

Φ0
2

Φ0
3

Figure 1. Energy level diagram for the ‘integer hierarchy’, including the information about the
ground states and the operators L±

k .

The hierarchies obtained from values λ and λ + m0, where m0 ∈ Z, are the same, so we
can get a family of different hierarchies characterized, for instance, by the values λ ∈ [0, 1/2].
Although the initial two-dimensional model (2.2) is related to the hierarchy with half-integer
values of λ, we will analyse the properties for any λ. Thus, we can distinguish the following
three classes of hierarchies.

• λ = 0. We call it the ‘integer hierarchy’ {Hm},m ∈ Z. It includes the Hamiltonian H0

and would correspond to two-valued eigenfunctions in the context of the two-dimensional
problem (2.2). The reflection in λ is implemented in the hierarchy, a scheme of which
can be seen in figure 1.

• λ = 1/2. We refer to this case as the ‘physical hierarchy’ {Hm+1/2},m ∈ Z, because it is
associated with the physical spin-1/2 systems of equation (2.2). Indeed, it is the only case
considered in all the previous references [1, 7, 8], and for it the operators L±

−1/2 are not
well defined, as can be seen from (3.3). Therefore, there are no first-order intertwining
operators connecting the Hamiltonians H1/2 and H−1/2. Remark that the hierarchy also
includes the reflection in λ.

• 0 < λ < 1/2. We will refer to this as the ‘general hierarchy’ {Hλ+m}. It does not
implement the reflection in λ; in fact this reflection gives rise to the hierarchies with
values −1/2 < λ < 0. The associated two-dimensional eigenfunctions are multiple-
valued.

4. The ground states of the hierarchies

It is known [2, 9] that the ground states of SUSY-hierarchy Hamiltonians are the main elements
when using the shape-invariance approach in the construction of the whole spectra and the
eigenfunctions for one-dimensional scalar problems. In this section, the explicit expressions
for the ground states of the matrix SUSY hierarchies described in the previous section will be
found and analysed.

Let us start with the ground-state wavefunctions 
0
λ+m annihilated by the general

intertwining operator L+
λ+m:

L+
λ+m
0

λ+m = 0. (4.1)

Then, according to (3.2) and (3.4), this will be an eigenfunction of Hλ+m with energy
E0

λ+m = γλ+m:

Hλ+m
0
λ+m = E0

λ+m
0
λ+m E0

λ+m = − 1

4(λ + m + 1/2)2
. (4.2)
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Let us use the notation (2.14) for the ground state


0
λ+m =

(
φ0

1,λ+m(r)

iφ0
2,λ+m(r)

)
, (4.3)

and let us make the substitution

φ0
j,λ(r) = z1+λ+mϕj (z) j = 1, 2 z = r

2(λ + m + 1/2)
(4.4)

in equation (4.1). Then, we arrive at a modified Bessel equation for the component ϕ1(z),

z2ϕ′′
1 (z) + zϕ′

1(z) − (z2 + 1)ϕ1(z) = 0, (4.5)

with general solution

ϕ1(z) = c1I1(z) + c2K1(z), (4.6)

where I1(z),K1(z) are the two linearly independent modified Bessel functions. After a simple
calculation, we arrive at the general form of the ground state (4.1) for any integer m:


0
λ+m(r) = c1Kλ+m(r) + c2Iλ+m(r), (4.7)

with

Kλ+m(r) = r1+λ+m

(
K1

(
r

2(λ+m+1/2)

)
iK0

(
r

2(λ+m+1/2)

)) (4.8)

Iλ+m(r) = r1+λ+m

(
I1

(
r

2(λ+m+1/2)

)
−iI0

(
r

2(λ+m+1/2)

)) . (4.9)

Remark that as the asymptotic behaviour of the modified Bessel functions I0(r) and
I1(r) in the limit r → +∞ exponentially increases, they cannot lead to square-integrable
functions. On the other hand, in the same limit K0(r) and K1(r) decrease exponentially,
while near the origin K0(r) ≈ log(r) and K1(r) ≈ 1/r . Thus, the physical solution will
be 
0

λ+m(r) ∝ Kλ+m(r), which is a well-behaved ground state of Hλ+m with λ + m > 0
(the ground state of H0 will be considered later).

Let us now consider the ground states 
̃0
λ+m of Hλ+m with λ + m < 0. They are

annihilated by the operator L−
λ+m−1 in the factorization (3.2): L−

λ+m−1
̃
0
λ+m = 0. Then,

according to (3.2) and (3.4), this will be an eigenfunction with energy Ẽ0
λ+m = E0

−λ−m =
γ−λ−m:

Hλ+m
̃0
λ+m = Ẽ0

λ+m
̃0
λ+m Ẽ0

λ+m = − 1

4(λ + m − 1/2)2
. (4.10)

After a computation similar to the one carried out in the previous case, we get the following
general solutions:


̃0
λ+m(r) = c1r

1−λ−m

(
K0

( −r
2(λ+m−1/2)

)
iK1

( −r
2(λ+m−1/2)

)) + c2r
1−λ−m

(
I0

( −r
2(λ+m−1/2)

)
−iI1

( −r
2(λ+m−1/2)

)) . (4.11)

As in the previous case, a study of the asymptotic behaviour shows that the square-integrable
and finite ground states are obtained by taking c2 = 0 in (4.11), whenever λ + m < 0.
The results for this case could be found directly from the previous one with the help of the
relation (3.7) between both types of intertwining operators through σ2.

In summary, we have one reasonable ground state for each Hamiltonian Hλ+m: if
λ + m > 0 it is of the form 
0

λ+m(r), while if λ + m < 0 it will take the form 
̃0
λ+m(r).
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There is only one Hamiltonian, H0, having a doubly degenerated square-integrable solution
with energy E0

0 = −1. But this case is rather special and we will comment on its lack of
physical meaning later on.

To end this section, let us now discuss the relationship between these ground-state solutions
and the superpotential. First of all, let us recall that

L+
λ+mKλ+m(r) = L+

λ+mIλ+m(r) = 0. (4.12)

Let us now introduce the 2 × 2 matrix Mλ+m(r), whose columns are Kλ+m(r) and Iλ+m(r), in
this order. Then, equations (4.12) can be expressed in a more compact form:

L+
λ+mMλ+m(r) = −M

′
λ+m(r) + Wλ+m(r)Mλ+m(r) = 0. (4.13)

Thus, after substituting (4.7), we again get the expression of (3.3) for the matrix superpotential
in terms of the solution matrix:

Wλ+m(r) = M
′
λ+m(r)M−1

λ+m(r) =
(
λ + m + 1

2

) − 1
2σ3

r
−

1
2σ2

λ + m + 1
2

. (4.14)

Therefore, we have shown that this class of matrix solutions Mλ+m(r) gives rise in a non-trivial
way to a Hermitian matrix superpotential. It is important to stress that there are not many
explicit examples satisfying this condition [12].

5. Excited states

In this section we will study the excited states of the system (2.9). There are some general
expressions valid for any hierarchy. In order to find the n-excited state 
n

λ(r) of a particular
HamiltonianHλ, λ > 0, we can start with the ground state 
0

λ+n(r), n ∈ Z
+, of the Hamiltonian

Hλ+n in the same hierarchy. Then


n
λ(r) = L−

λ L−
λ+1 · · · L−

λ+n−1

0
λ+n(r) (5.1)

with energy

En
λ = − 1

4(λ + n + 1/2)2
. (5.2)

Two natural questions now arise:

• Are the excited states obtained in this way always square integrable?
• Are these excited states the only bounded physical states for each Hamiltonian of the

hierarchy?

Here, in the context of the factorization method, we can answer to the first question: under the
assumption λ > 0, all the eigenfunctions build in the form (5.1) are finite, square integrable
and vanishing at the endpoints (0 and +∞), so they indeed describe excited bound states.
The details are given in the appendix. With respect to the second question, as in the two-
dimensional scalar models [10], it should be studied from the point of view of a general
‘oscillation theorem’ for matrix Sturm–Liouville operators to guarantee that no additional
excited states exist besides those obtained after applying the shape-invariance procedure (for
a discussion on two-dimensional scalar models see [10]). Meanwhile, one can note that each
component of the constructed nth excited states (5.1) has exactly (n − 1) nodes.

If λ < 0, the excited states with similar properties are obtained from the other class of
ground states:


̃n
λ(r) = L+

λ−1L
+
λ−2 · · ·L+

λ−n
̃
0
λ−n(r), (5.3)
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with energy

Ẽn
λ = − 1

4(λ − n − 1/2)2
. (5.4)

Now, we will consider some specific features of each hierarchy.

5.1. ‘Integer hierarchy’ (λ = 0): Hm,m ∈ Z

A representation of this hierarchy can be seen in figure 1. It includes the Hamiltonian H0

which has the peculiarity that both procedures lead to two square-integrable excited states for
each energy

En
0 = − 1

4(n + 1/2)2
. (5.5)

Therefore, in principle, each eigenvalue level is doubly degenerated. However, an important
difference is that in each eigenfunction one of the components vanishes at the origin, while
the other one does not. This feature leads to some problems about the physical interpretation,
which we will discuss now.

The matrix Hamiltonian H0 in (2.9) can be diagonalized by means of the unitary matrix
U = 1√

2
(iσ0 + σ1),

H0
 =
{
− d2

dr2
− σ2

r

}

 ⇐⇒ Hd
d =

{
− d2

dr2
− σ3

r

}

d, (5.6)

where Hd = UH0U† and 
d = U
. Thus, we can write

Hd =
(

h− 0
0 h+

)
, (5.7)

where h± = − d2

dr2 ± 1
r

are scalar Hamiltonians. In particular, the lowest energy (E = −1)

normalizable solutions of the Schrödinger equation with Hamiltonian (5.7) are as follows:


0
− = r√

2

(
K1(r) + K0(r)

0

)

0

+ = r√
2

(
0

K1(r) − K0(r)

)
(5.8)


0
d = U
0

0 
̃0
d = U
̃0

0. (5.9)

One can note that these solutions, as well as the higher energy solutions, do not vanish at the
origin and therefore correspond to divergent mean values of the potential energy terms. A plot
of some of these functions can be seen in figure 2. For this reason, solutions (5.9), though
being normalizable, do not belong to the physical sector of the model.

Nevertheless, these non-physical solutions are quite useful from the point of view of
SUSY quantum mechanics. Indeed, they are used to generate the intertwining operators
L±

m to get a hierarchy Hm of shape-invariant non-diagonal Hamiltonians starting from H0,
which is diagonal. Besides, any Hm,m �= 0, has a sensible physical discrete spectrum with
eigenfunctions vanishing at the origin. By extending the label m to a real number we get all
the hierarchies Hλ+m.

5.2. ‘Physical hierarchy’ (λ = 1/2): Hm+1/2,m ∈ Z

The general scheme (5.1)–(5.4) is still valid here. But since in this hierarchy the operators
L±

−1/2 are not defined, in order to connect the excited states of H1/2 and H−1/2 we need a
zero-order intertwining operator given by the reflection (2.15),


n
1/2 ∝ σ2


n
−1/2. (5.10)
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Figure 2. Plot of the two components of the eigenfunctions (the first component in the solid line,
the second one in the dashed line) for the ground and the first excited states of the Hamiltonians
H0 (left) and H1/2 (right).
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Figure 3. Energy level diagram for the ‘general hierarchy’, including the information about the
ground states and the operators L±

λ+m.

It is interesting to remark that it is possible to include in a very natural way the operator
σ2 inside the set of intertwining operators L±

λ+m if we ‘normalize’ them by a factor

L̃±
λ+m := (λ + m + 1/2)L±

λ+m. (5.11)

Then, the set
{
L̃±

λ+m

}
,m ∈ Z, will also act as intertwining operators of the hierarchy Hλ+m as

in (3.5), but they are always well defined, and in particular L̃±
−1/2 = −σ2, as it should be.

However, the expression of the Hamiltonians in terms of the normalized operators are
changed by these factors and it gives rise to the following ‘commutation rules’:

L̃+
λ+m−1L̃

−
λ+m−1 − L̃−

λ+mL̃+
λ+m = −2(λ + m)Hλ+m. (5.12)

5.3. ‘General hierarchy’ Hλ+m,m ∈ Z

If 0 < λ < 1/2 we will have two kinds of Hamiltonians in the hierarchy. The right-hand
Hamiltonians Hλ+m,m = 0, 1, . . . , and the left-hand ones Hλ−m,m ∈ N. We have two special
features: (a) the excited states of the right (left) Hamiltonians are only obtained from the right
(left) ground states. However L±

λ−1, do not connect these two kinds of Hamiltonians, nor the
reflection matrix σ2 can be used to connect the two Hamiltonian sectors. (b) The spectrum
of these two types of Hamiltonians is different. In this case the operators L±

λ+m, acting on
physical states, do not always generate again physical states. A schematic diagram of this case
can be seen in figure 3.
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6. Factorization operators and second-order symmetries

As we have seen above, the action of the operators L±
λ+m on eigenfunctions of the Hamiltonian

hierarchy changes the label λ + m in one unit, while keeping the energy. We can write this
property as follows:

L+
λ+m
λ+m(r) ∝ 
λ+m+1(r) L−

λ+m
λ+m+1(r) ∝ 
λ+m(r). (6.1)

If we recall that the label λ+m is for the J3-eigenvalue, we can say that the operators L±
λ+m act

essentially as lowering or raising operators for J3. However, when they act on the eigenstates
of the Hamiltonians Hλ they preserve the energy eigenvalue.

Now, if we go back to the second-order symmetries T1, T2 of the initial Hamiltonian H,
and we introduce the operators T ± = ±i(T1 ∓ iT2)/2, they satisfy the commutation rules

[J3, T ±] = ±T ± [H, T ±] = 0 [T +, T −] = −2HJ3. (6.2)

This means that T ± acting on the common eigenfunctions of H and J3 realizes the same role
played by L±

λ+m: change the J3-eigenvalue in one unit while they leave that of H unaltered.
Therefore, there must be a close relationship between both types of operators, as it was the
case for the Coulomb problem [13]. Indeed, if we write the eigenfunctions �λ(r, θ) given in
(2.5)–(2.6) in terms of 
λ(r) introduced in (2.8),

�λ(r, θ) = r−1/2Yλ(θ)
λ(r), (6.3)

and we use the first commutation relation in equation (6.2), we have

T ±�λ(r, θ) ∝ �λ±1(r, θ). (6.4)

In order to prove this relationship explicitly, let us first use (1.10)–(1.11) and (2.1)–(2.3) to
express T ± in polar coordinates:

T + = − i

2
eiθ

{
−2

( i

r
∂θ + ∂r

) (
∂θ +

i

2
(σ3 + σ0)

)
+

(
0 −e−iθ

eiθ 0

)}
T − = i

2

{
−2

(
− i

r
∂θ + ∂r

) (
∂θ +

i

2
(σ3 + σ0)

)
−

(
0 −e−iθ

eiθ 0

)}
e−iθ .

(6.5)

Then, if we take into account that

∂θ�λ(r, θ) = ir−1/2Yλ(θ)

(
λσ0 − 1

2
σ3

)

λ(r) (6.6)

∂r�λ(r, θ) = r−1/2Yλ(θ)

(−1

2r
+ ∂r

)

λ(r) (6.7)(

0 −e−iθ

eiθ 0

)
�λ(r, θ) = (−i)r−1/2Yλ(θ)σ2
λ(r) (6.8)

and we insert these identities in (6.5), we get the induced action of T ± on 
λ(r):

T ±
λ(r) =
(

λ +
1

2

)[
∓ d

dr
+

(λ ± 1/2) − (1/2)σ3

r
− 1/2

λ ± 1/2
σ2

]

λ(r). (6.9)

If we compare the above expression with definition (3.3) of L±
λ , we see that, indeed, the

action of the second-order symmetries T ± induced in the space of the eigenfunctions 
λ+m(r)

essentially coincides with the action of the intertwining operators L±
λ+m, as we expected from

the initial intuitive arguments. In fact, we get the normalized operators L̃±
λ defined in (5.11),

and commutation (6.2) of T ± induces in the space of functions 
λ+m(r) the relation displayed
in (5.12) between the operators L̃±

λ+m.
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7. Ladder operators

In this section we will investigate the construction of ladder operators that will allow us to link
the excited states of a given Hamiltonian Hλ.

Let us consider the eigenvalue equation (2.9) for a given Hamiltonian Hλ corresponding
to the energy En

λ and eigenfunction 
n
λ(r) given in (5.1)–(5.2). After multiplying by r2, we

reorder the terms in the following way:

Rλ,n

n
λ(r) ≡

[
−r2 d2

dr2
− rσ2 +

r2

4(λ + n + 1/2)
− λσ3

]

n

λ(r) = −λ2
n
λ(r). (7.1)

In a similar way to what we did in (3.1)–(3.2), we can factorize the operators Rλ,n in two
ways:

Rλ,n = Q+
λ,nQ

−
λ,n + ωλ,n = Q−

λ,n+1Q
+
λ,n+1 + ωλ,n+1, (7.2)

where

Q+
λ,n =

[
−r

d

dr
+

λσ3

2(λ + n)
− (λ + n) +

1

2
+

σ2

2(λ + n + 1/2)
r

]
D−1

λ+n (7.3)

Q−
λ,n = Dλ+n

[
r

d

dr
+

λσ3

2(λ + n)
− (λ + n) − 1

2
+

σ2

2(λ + n + 1/2)
r

]
(7.4)

ωλ,n = − λ2

4(λ + n)2
− (λ + n)2 +

1

4
, (7.5)

and the operators Dλ+n are dilation operators defined by

Dλ+nr = λ + n + 1/2

λ + n − 1/2
r =

√
En

λ

En−1
λ

r. (7.6)

The operators Q±
λ,n+1 act as intertwining of the differential operators Rλ,n and Rλ,n+1:

Q+
λ,n+1Rλ,n = Rλ,n+1Q

+
λ,n+1 Q−

λ,n+1Rλ,n+1 = Rλ,nQ
−
λ,n+1. (7.7)

As a consequence, the set of operators
{
Q±

λ,n, n ∈ Z
+} will act as lowering and raising

operators for the Hamiltonian Hλ,

Q+
λ,n+1 : 
n

λ → 
n+1
λ Q−

λ,n+1 : 
n+1
λ → 
n

λ. (7.8)

From (7.2) we can compute the normalization of the eigenfunctions obtained in this way:∥∥
n+1
λ

∥∥2 = (ωλ,0 − ωλ,n+1)
∥∥
n

λ

∥∥2
. (7.9)

In particular for n = 0, we have Q−
0 
0

λ = 0. The operators Q±
λ,n constitute a non-trivial

generalization of those well known for the Coulomb problem [11].
Finally, we can join the two families of ‘ladder operators’ found up to now,

{
L±

λ+m

}
and{

Q±
n

}
, to build a ‘dynamical algebra’ inside the hierarchy {Hλ+m}. However, only for the case

λ = 1/2 all these operators will connect exclusively physical states of the discrete spectrum.

8. Remarks and conclusions

In this paper we have studied a two-dimensional Pauli Hamiltonian, which has two independent
integrals of motion, from the point of view of supersymmetric quantum mechanics. We have
examined a series of properties that were not fully explored up to now:
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(i) We have considered some useful discrete symmetries since the very beginning.
(ii) We also included in our study a family of Hamiltonian hierarchies labelled by the parameter

λ ∈ [0, 1/2]. For all these hierarchies the spectral problem was solved by means of the
matrix shape-invariant method.

(iii) We have shown the relation between these intertwining operators and the second-order
symmetries.

(iv) We also computed the ladder operators suitable to this matrix problem, which link the
excited states of the same Hamiltonian.

In summary, we have shown that the methods employed along with this paper (SUSY quantum
mechanics) constitute a very useful tool for the investigation of Pauli matrix Hamiltonians and
deserve to be exploited for more general situations.
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Appendix

In this appendix we will show that the excited physical states 
n
λ(r) are well behaved near the

origin and at infinity. We start with expression (5.1) for the excited states, taking into account
that the physical ground states are 
0

λ+n(r) ∝ Kλ+n(r), where Kλ+n(r) is given in (4.8). For
the sake of simplicity, we will use in the following the variable a = λ + n, and therefore (5.1)
takes the form


n
a−n(r) = L−

a−nL
−
a−n+1 · · · L−

a−2L
−
a−1


0
a(r), (A.1)

where, according to (4.8), the ground state is given by


0
a(r) = (2a + 1)a+1

(
za+1K1 (z)

iza+1K0 (z)

)
z = r

2a + 1
. (A.2)

Using the new variable z, the operators L−
b adopt the form

L−
b = 1

2a + 1

[
d

dz
+

2b + 1 − σ3

2z
− 2a + 1

2b + 1
σ2

]
. (A.3)

It is interesting to know the approximate form that have these operators near the origin
(r, z ≈ 0) and at infinity (r, z ≈ ∞). Indeed, we have the following:

if r, z ≈ 0, L−
b ≈ N−

b = 1

2a + 1

(
∂z + b

z
0

0 ∂z + b+1
z

)
(A.4)

if r, z ≈ ∞, L−
b ≈ G−

b = 1

2a + 1

(
∂z i 2a+1

2b+1

−i 2a+1
2b+1 ∂z

)
. (A.5)
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A.1. Behaviour near the origin

In this approximation, we have that


n
a−n ≈ N−

a−nN
−
a−n+1 · · · N−

a−2N
−
a−1


0
a n = 1, 2, . . . (A.6)

and using

K0(z) ≈ log(z) K1(z) ≈ 1/z (A.7)

K ′
0(z) = −K1(z) zK ′

1(z) = −zK0(z) − K1(z), (A.8)

we can prove that

N−
a−1


0
a ≈ (2a + 1)a

(
2a − 1 0

0 2a + 1

) (
zaK1(z)

izaK0(z)

)

N−
a−2N

−
a−1


0
a ≈ (2a + 1)a−1

(
[2a − 1][2a − 3] 0

0 [2a + 1][2a − 1]

)(
za−1K1(z)

iza−1K0(z)

)
.

Therefore


n
a−n ≈ 2n(2a + 1)a−n+1

( �(a+1/2)

�(a+1/2−n)
0

0 �(a+3/2)

�(a+3/2−n)

) (
za−n+1K1(z)

iza−n+1K0(z)

)
(A.9)

or


n
λ ≈ 2n(2λ + 2n + 1)λ+1

(�(λ+n+1/2)

�(λ+1/2)
0

0 �(λ+n+3/2)

�(λ+3/2)

)(
zλ+1K1(z)

izλ+1K0(z)

)
. (A.10)

From here, taking into account (A.7), it is easy to conclude that for any λ > 0 the states 
n
λ

are well behaved near the origin.

A.2. Behaviour at the infinity

For big values of the variables z or r, we have that


n
a−n ≈ G−

a−nG
−
a−n+1 · · · G−

a−2G
−
a−1


0
a (A.11)

and taking into account that in this region we can approximate

Kν(z) ≈
√

π

2z
e−z (A.12)

after a simple calculation we get


n
a−n ≈ (−σ2)

n

(2a + 1)n

�(a − n + 1/2)�(2a + 1)

�(a + 1/2)�(2a − n + 1)

0

a (A.13)

or


n
λ ≈ (−σ2)

n

(2λ + 2n + 1)n

�(λ + 1/2)�(2λ + 2n + 1)

�(λ + n + 1/2)�(2λ + n + 1)

0

λ+n. (A.14)

Using (A.12), we conclude that for any λ > 0 the states 
n
λ are well behaved at infinity.
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